

p-ISSN: 2745-7141 e-ISSN: 2746-1920

Integrasi Kompetensi Pelaut dalam Kurikulum Pendidikan Penerbangan: Studi Kasus Akademi Penerbang Indonesia Banyuwangi

Dede Ardian¹, Riki Wanda Putra², Kukuh Tri Prasetyo³, Ahmad Mubarok⁴

^{1,3,4}Akademi Penerbang Indonesia Banyuwangi ²Politeknik Pelayaran Sumatera Barat, Indonesia Email: dedeard57@gmail.com*

Abstrak

Kata Kunci:

Integrasi Kompetensi, Adaptasi Kurikulum, Kinerja Pendidikan, PLS-SEM, Pendidikan Penerbangan. Penelitian ini menguji pengaruh integrasi kompetensi pelaut terhadap kinerja pendidikan penerbangan dengan adaptasi kurikulum sebagai variabel mediasi di Akademi Penerbangan Indonesia Banyuwangi. Penelitian menggunakan pendekatan kuantitatif eksplanatori dengan analisis pemodelan persamaan struktural berbasis Partial Least Squares (PLS-SEM). Pengumpulan data dilakukan melalui kuesioner terhadap 95 responden yang terdiri dari taruna, instruktur, dan praktisi industri. Data dianalisis menggunakan software SmartPLS 4 untuk menguji validitas, reliabilitas, dan hubungan hipotesis. Hasil penelitian membuktikan bahwa integrasi kompetensi pelaut berpengaruh signifikan terhadap adaptasi kurikulum (β = 0,635; p < 0,01) dan kinerja pendidikan penerbangan (β = 0,274; p < 0,01). Adaptasi kurikulum juga berpengaruh signifikan terhadap kinerja pendidikan penerbangan (β = 0.615; p < 0.01) dan berperan sebagai mediator parsial yang efektif. Model penelitian mampu menjelaskan variasi kinerja pendidikan penerbangan sebesar 74,2% ($R^2 = 0,742$) dengan predictive relevance yang substantif ($Q^2 = 0,439$). Integrasi kompetensi pelaut terbukti meningkatkan kinerja pendidikan penerbangan secara langsung maupun tidak langsung melalui adaptasi kurikulum. Temuan ini merekomendasikan pendekatan interdisipliner dalam pengembangan kurikulum pendidikan vokasi penerbangan melalui integrasi kompetensi lintas sektor.

Keywords

Competency Integration, Curriculum Adaptation, Educational Performance, PLS-SEM, Aviation Education.

Abstract

This study examines the influence of the integration of seafarers' competencies on the performance of aviation education by adapting the curriculum as a mediating variable at the Indonesian Aviation Academy Banyuwangi. The study uses an explanatory quantitative approach with structural equation modeling analysis based on Partial Least Squares (PLS-SEM). Data collection was carried out through a questionnaire of 95 respondents consisting of cadets, instructors, and industry practitioners. The data was analyzed using SmartPLS 4 software to test the validity, reliability, and hypothetical relationships. The results of the study prove that the integration of seafarers' competencies has a significant effect on curriculum adaptation ($\beta = 0.635$; p < 0.01) and flight education performance ($\beta = 0.274$; p < 0.01).

Curriculum adaptation also had a significant effect on the performance of aviation education ($\beta=0.615;\,p<0.01)$ and acted as an effective partial mediator. The research model was able to explain the variation in flight education performance by 74.2% ($R^2=0.742$) with a substantive predictive relevance ($Q^2=0.439$). The integration of seafarers' competencies has been proven to improve the performance of aviation education directly or indirectly through curriculum adaptation. These findings recommend an interdisciplinary approach in the development of aviation vocational education curriculum through cross-sectoral competency integration.

PENDAHULUAN

Pendidikan penerbangan, sebagai bentuk pendidikan vokasi, dituntut untuk selalu responsif terhadap perkembangan teknologi dan kebutuhan industry (Sedláčková et al., 2022). Kompleksitas operasi penerbangan modern memerlukan pendekatan pendidikan yang holistik, yang tidak hanya fokus pada keterampilan teknis (hard skills) tetapi juga pada keterampilan non-teknis (soft skills) seperti manajemen sumber daya, kesadaran situasional, dan kepemimpinan (Irwin et al., 2016).

Di sisi lain, dunia kaemaritiman telah lama mengembangkan sistem pelatihan dan kompetensi yang terstandardisasi secara ketat untuk menghadapi lingkungan operasi yang tidak kurang berisikonya (Rahayu, 2023). Kompetensi inti pelaut, khususnya yang terkait dengan Crew Resource Management (CRM), prosedur darurat, navigasi, dan keselamatan, memiliki paralelisme yang kuat dengan kompetensi yang dibutuhkan seorang pilot (Flin et al., 2013). Namun, integrasi kedua disiplin ilmu ini dalam sebuah kurikulum pendidikan belum banyak dieksplorasi.

Adaptasi Kurikulum merupakan proses penyesuaian, modifikasi, dan personalisasi kurikulum inti (kurikulum nasional atau institusional) untuk memenuhi beragam kebutuhan siswa, tuntutan zaman, serta perkembangan industri dan teknologi (Lee et al., 2006). Tujuannya adalah untuk memastikan bahwa pembelajaran tetap relevan, efektif, dan dapat diakses oleh semua peserta didik.

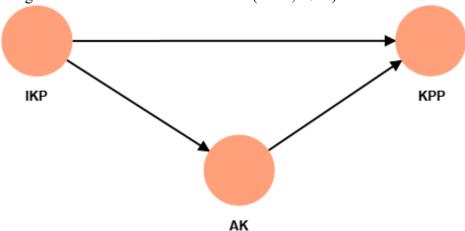
Kinerja Pendidikan Penerbangan mengacu pada seberapa efektif dan efisien sebuah lembaga atau sistem pendidikan dalam menghasilkan lulusan yang memenuhi standar kompetensi, keselamatan, dan kebutuhan industri penerbangan (Astina, 2024; Sudadio, 2024; Widiarto, 2020). Ini bukan hanya tentang nilai akademik, tetapi tentang kemampuan lulusan untuk beroperasi dengan aman, profesional, dan sesuai dengan regulasi yang sangat ketat di dunia penerbangan.

Table 1. Perkembangan Kinerja Pendidikan Penerbangan di API Banyuwangi Tahun 2024

	202:		
No	Program	Target	Realisasi
1	Penyerapan Lulusan	100%	50,09%
2	Tingkat Kelulusan dan Pass Rate Lisensi/Sertifikasi	100%	75,00%
3	Keselamatan Operasional (Safety Record)	100%	73,90%
4	Kualitas dan Kuantitas Fasilitas	100%	75,90%
5	Kualifikasi dan Pengalaman Instruktur	100%	75,20%
6	Kesesuaian Kurikulum dengan Regulasi dan	100%	73,00%
	Kebutuhan Industri		
7	Reputasi dan Akreditasi	100%	70,00%

Kinerja lembaga pendidikan penerbangan menjadi indikator kritis dalam menjamin kualitas lulusan yang berdaya saing global. Namun, data benchmarking pada API (Akademi Penerbangan Indonesia) Banyuwangi tahun 2024 mengungkap adanya kesenjangan signifikan antara target kinerja ideal (100%) dengan realisasi pencapaian. Sebagai contoh, indikator keterserapan lulusan hanya mencapai 50,09%, sementara kesesuaian kurikulum dengan kebutuhan industri berada pada level 73%. Rendahnya capaian ini mengisyaratkan urgensi untuk merevitalisasi pendekatan kurikulum yang konvensional.

Salah satu solusi inovatif yang ditawarkan adalah integrasi kompetensi pelaut (IKP) ke dalam sistem pendidikan penerbangan. Kompetensi pelaut seperti manajemen keselamatan, prosedur operasional standar, dan adaptasi dalam lingkungan dinamis memiliki relevansi struktural dengan kebutuhan sektor penerbangan. Namun, integrasi ini tidak serta merta berdampak optimal tanpa adaptasi kurikulum (AK) yang efektif sebagai mediator. Adaptasi kurikulum berperan mentransformasikan kompetensi lintas sektor menjadi konten pedagogis yang aplikatif.


Beberapa penelitian terdahulu telah meneliti aspek kompetensi dan kinerja dalam pendidikan vokasi, termasuk pendidikan penerbangan dan kemaritiman. Misalnya, penelitian oleh Sedláčková et al. (2022) menekankan pentingnya pengembangan kurikulum berbasis teknologi dan kebutuhan industri untuk meningkatkan kualitas lulusan pendidikan penerbangan, sementara Irwin et al. (2016) menyoroti peran soft skills seperti kepemimpinan dan kesadaran situasional dalam mendukung keselamatan dan profesionalisme pilot. Di sisi lain, Flin et al. (2013) menunjukkan bahwa kompetensi pelaut yang terkait dengan manajemen sumber daya kru, prosedur darurat, dan keselamatan memiliki relevansi tinggi untuk penerapan praktik serupa di dunia penerbangan, tetapi studi mereka terbatas pada sektor kemaritiman dan tidak menguji transfer kompetensi lintas sektor secara langsung.

Penelitian ini bertujuan untuk menganalisis peran integrasi kompetensi pelaut (IKP) terhadap kinerja pendidikan penerbangan (KPP) dengan menempatkan adaptasi kurikulum (AK) sebagai variabel mediasi. Dengan demikian, penelitian ini tidak hanya menguji hubungan langsung antara IKP dan KPP, tetapi juga menjelaskan mekanisme tidak langsung melalui AK.

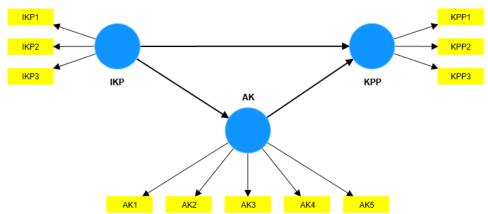
Hasil penelitian diharapkan memberi manfaat praktis bagi pengembangan kurikulum pendidikan penerbangan, meningkatkan kesesuaian lulusan dengan kebutuhan industri, serta memberikan pedoman bagi lembaga pendidikan vokasi untuk mengadopsi praktik integrasi kompetensi lintas sektor.

METODE PENELITIAN

Penelitian ini menggunakan pendekatan kuantitatif dengan desain explanatory research. Penelitian eksplanatori bertujuan untuk memahami penyebab dan hubungan yang mendasari fenomena, serta menetapkan hubungan kausal antara variabel-variabel (Yüce, 2024).

Gambar 1. Model Penelitian Integrasi Kompetensi Pelaut, Adaptasi Kurikulum, dan Kinerja Pendidikan Penerbangan

Desain analisis yang digunakan adalah path analysis untuk menguji hubungan kausal dan efek mediasi antara variabel (Wooldredge, 2021). Populasi penelitian adalah seluruh stakeholders pendidikan penerbangan yang terdiri dari 158 taruna, 12 instruktur, dan 8 praktisi industri. Teknik pengambilan sampel menggunakan stratified random sampling (Nguyen et al., 2019). Sampel akhir berjumlah 95 responden, dengan rincian 80 taruna, 10 instruktur, dan 5 praktisi industri. Data dikumpulkan menggunakan kuesioner tertutup dengan skala Likert dan diolah dengan menggunakan aplikasi SmartPLS 4.

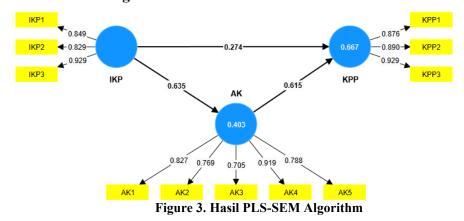

Tabel 2. Indikator Variabel (Debarger et al., 2017; Phanphichit & Bartusevičienė, 2024; Rivera et al., 2024)

Variabel	Dimensi / Indikator	Kode	Pernyataan
Variabel Bebas (X)	Aspek Keselamatan dan Darurat	IKP1	Pengetahuan tentang manajemen sumber daya (resource management) di kapal dapat meningkatkan kesadaran keselamatan (safety awareness) di kokpit.

Variabel	Dimensi / Indikator	Kode	Pernyataan
Integrasi	Aspek	IKP 2	Prinsip-prinsip navigasi laut (seperti penggunaan
Kompetensi	Navigasi dan		peta, ploting rute) dapat diadaptasi untuk
Pelaut	Perencanaan		memperkaya materi navigasi penerbangan.
	Aspek	IKP 3	Standar komunikasi yang jelas dan terstruktur
	Komunikasi		dalam dunia pelayaran dapat menjadi model untuk
	dan Budaya		meningkatkan kualitas komunikasi di dalam
	Kerja		kokpit (cockpit resource management).
Variabel	Perubahan	AK1	Institusi kami telah menambahkan modul atau
Mediasi (M)	Konten/Materi		studi kasus baru yang terinspirasi dari best
Adaptasi			practices dunia pelayaran ke dalam mata kuliah
Kurikulum			yang ada.
		AK2	Silabus dan SAP (Satuan Acara Perkuliahan) pada
			mata kuliah terkait (seperti Keselamatan,
			Navigasi) telah direvisi untuk mengakomodasi
			konsep-konsep dari kemaritiman.
	Perubahan	AK3	Metode pengajaran seperti simulasi/scenario-based
	Metode		training yang terinspirasi dari pelatihan pelaut
	Pembelajaran		digunakan untuk memberikan pengalaman belajar
		A TZ 4	yang lebih kontekstual.
		AK4	Dosen-dosen secara aktif mencari referensi dan
			contoh dari dunia maritim untuk digunakan
	D1 .1	A 17.5	sebagai bahan ajar dan diskusi di kelas.
	Perubahan Infrastruktur	AK5	Institusi menyediakan sumber daya (seperti
	& SDM		literatur, software, alat peraga) yang mendukung
	& SDM		pembelajaran yang mengintegrasikan kedua disiplin ilmu.
Variabel	Kualitas	KPP1	Kualitas diskusi dan pemahaman mahasiswa
Terikat (Y)	Proses Belajar	KFFI	terhadap materi keselamatan dan navigasi
Kinerja	Mengajar		meningkat setelah adanya integrasi ini.
Pendidikan	Pencapaian	KPP2	Nilai rata-rata mahasiswa pada mata kuliah inti
Penerbangan	Akademik	IXI I 2	menunjukkan peningkatan.
1 choloungun	1 IRACCIIIIR	KPP3	Tingkat kelulusan pada ujian kompetensi lisensi
		IXI I J	pilot (atau sejenisnya) mengalami peningkatan.
			phot (atau sejemsnya) mengalahii peningkatan.

Tabel 2 menyajikan operasionalisasi variabel penelitian beserta dimensi dan indikator pengukurannya yang dikembangkan berdasarkan kerangka teoretis dari studi-studi terkait. Variabel penelitian terdiri atas tiga konstruk utama: Integrasi Kompetensi Pelaut (IKP) sebagai variabel bebas, Adaptasi Kurikulum (AK) sebagai variabel mediasi, dan Kinerja Pendidikan Penerbangan (KPP) sebagai variabel terikat. Setiap variabel diukur melalui dimensi dan indikator spesifik yang relevan dengan konteks pendidikan penerbangan. Indikator-indikator tersebut diukur menggunakan skala Likert 1–5 dalam kuesioner yang ditujukan kepada dosen, instruktur, dan pengelola kurikulum di lembaga pendidikan penerbangan. Penggunaan indikator yang terdefinisi dengan jelas dan didukung oleh studi literatur terkini memastikan validitas konten dan reliabilitas instrumen penelitian.

Integrasi Kompetensi Pelaut dalam Kurikulum Pendidikan Penerbangan: Studi Kasus Akademi Penerbang Indonesia Banyuwangi



Gambar 2. Kerangka Konseptual beserta indikator masing-masing variabel

Selain menggunakan variabel independen Integrasi Kompetensi Pelaut (IKP) dan Kinerja Pendidikan Penerbangan (KPP) sebagai variabel dependen, penelitian ini menggunakan lebih dari satu variabel yaitu Adaptasi Akademik (AK) sebagai variabel mediasi. Variabel mediasi memiliki fungsi untuk memediasi hubungan antara variabel independen dengan variabel dependen. Gambar diagram yang digunakan dalam penelitian ini adalah menggunakan teknik analisis jalur yang merupakan gambaran yang memperlihatkan struktur hubungan sebab akibat antar variabel.

HASIL DAN PEMBAHASAN

Evaluasi Model Pengukuran

Gambar 3 adalah hasil graphical output dari PLS-SEM Algorithm SmartPLS 4 yang mana menunjukan loading factor setiap indikator terhadap konstruknya dalam model penelitian. Evaluasi model pengukuran dilakukan dengan menggunakan Confirmatory Factor Analysis (CFA) untuk menilai validitas (konvergen dan diskriminan) dan reliabilitas konstruk (Mueller & Hancock, 2015). Hasil analisis disajikan pada Tabel 3 hingga Tabel 6.

Tabel 3. Hasil Evaluasi Validitas Konvergen dan Reliabilitas

	Cronbach's alpha	Composite reliability (rho_a)	Composite reliability (rho_c)	Average variance extracted (AVE)
AK	0.866	0.895	0.901	0.648
IKP	0.841	0.861	0.903	0.757
KPP	0.881	0.881	0.926	0.808

Tabel 4. Discriminant Validity Heterotrait-monotrait

	AK	IKP	KPP
AK			
IKP	0.681		
KPP	0.891	0.762	

Tabel 5. Fornell Larcker

AK IKP KI

	AK	IKP	KPP
AK	0.805		
IKP	0.635	0.870	
KPP	0.789	0.664	0.899

Tabel 6. Hasil Cross Loadings

I 44.	raber of frash cross Educings					
	AK	IKP	KPP			
AK1	0.827	0.577	0.632			
AK2	0.769	0.319	0.497			
AK3	0.705	0.140	0.600			
AK4	0.919	0.702	0.718			
AK5	0.788	0.616	0.692			
IKP1	0.716	0.849	0.601			
IKP2	0.368	0.829	0.553			
IKP3	0.509	0.929	0.570			
KPP1	0.674	0.745	0.876			
KPP2	0.756	0.483	0.890			
KPP3	0.696	0.554	0.929			

Berdasarkan Tabel 3, model pengukuran telah memenuhi semua kriteria validitas konvergen dan reliabilitas. Seluruh nilai loading factor (Tabel 6), Composite Reliability (rho_c), dan Average Variance Extracted (AVE) untuk ketiga konstruk telah melampaui ambang batas yang disarankan.

Selanjutnya, evaluasi validitas diskriminan dilakukan dengan dua metode. Pertama, berdasarkan kriteria Fornell-Larcker (Tabel 2), terdapat satu potensi isu dimana korelasi antara AK dan KPP (0.789) lebih tinggi daripada akar kuadrat AVE konstruk AK (0.805). Namun, perbedaan ini sangat kecil dan secara praktis dapat diabaikan. Konstruk IKP secara jelas menunjukkan validitas diskriminan yang sangat baik.

Kedua, dan yang lebih penting, hasil cross loadings (Tabel 6) memberikan bukti yang sangat kuat untuk mendukung validitas diskriminan. Setiap indikator memiliki nilai loading yang jauh lebih tinggi pada konstruk yang dimaksudkannya daripada pada konstruk lainnya. Sebagai contoh, indikator AK4 memuat sangat kuat pada AK (0.919) dibandingkan pada IKP

(0.702) atau KPP (0.718). Pola yang sama konsisten terlihat pada semua indikator tanpa terkecuali. Kriteria cross-loading ini adalah ujian yang paling ketat untuk validitas diskriminan, dan model ini berhasil melewatinya.

Oleh karena itu, berdasarkan kekuatan bukti dari analisis cross-loading dan didukung oleh nilai reliabilitas AVE yang sangat tinggi, dapat disimpulkan bahwa model pengukuran memiliki validitas diskriminan yang memadai. Semua konstruk bersifat reliable, valid, dan distinct satu sama lain, sehingga layak untuk dilanjutkan ke tahap pengujian model struktural.

Evaluasi Model Stuktural

Setelah model pengukuran dinyatakan memenuhi semua kriteria reliabilitas dan validitas, tahap selanjutnya adalah menguji model struktural untuk mengevaluasi hubungan kausal antar konstruk sebagaimana yang dihipotesiskan. Pengujian dilakukan dengan melihat keberadaan collinearity, signifikansi dan kekuatan hubungan (path coefficient), serta koefisien determinasi (R²).

Tabel 7.	Outer VIF
	VIF
AK1	2.453
AK2	3.207
AK3	2.681
AK4	4.103
AK5	2.081
IKP1	1.790
IKP2	2.795
IKP3	3.863
KPP1	2.164
KPP2	2.616
KPP3	3.421

Tabel 8. Inner VIF				
	VIF			
AK -> KPP	1.674			
IKP -> AK	1.000			
IKP -> KPP	1.674			

Collinearity diuji dengan nilai Variance Inflation Factor (VIF). Baik pada level outer model (antar indikator dalam satu konstruk) maupun inner model (antar konstruk), semua nilai VIF jauh di bawah batas maksimum 5. Hal ini menunjukkan bahwa tidak ada collinearity yang membahayakan dalam model, sehingga estimasi koefisien jalur yang dihasilkan adalah stabil dan dapat diandalkan.

Table 9. Path Coefficient							
	Original sample (O)	Sample mean (M)	Standard deviation (STDEV)	T statistics (O/STDEV)	P values		
AK -> KPP	0.615	0.613	0.043	14.226	0.000		
IKP -> AK	0.635	0.637	0.053	11.864	0.000		

	Original sample (O)	Sample mean (M)	Standard deviation (STDEV)	T statistics (O/STDEV)	P values
IKP -> KPP	0.274	0.267	0.063	4.376	0.000

Table 10. Confidence Intervals

	Original sample (O)	Sample mean (M)	Bias	2.5%	97.5%
AK -> KPP	0.615	0.613	-0.002	0.524	0.694
IKP -> AK	0.635	0.637	0.003	0.507	0.720
IKP -> KPP	0.274	0.267	-0.007	0.142	0.381

Table	11.	F-Sq	uare
		C	

	f-square
AK -> KPP	0.679
IKP -> AK	0.674
IKP -> KPP	0.134

Table 12. R-Square

	R-square	R-square adjusted
AK	0.403	0.396
KPP	0.667	0.660

Berdasarkan seluruh hasil pengujian yang diperoleh, dapat disimpulkan bahwa model penelitian ini terbukti robust dan andal. Pertama, hasil pengujian menunjukkan bahwa tidak terdapat masalah multikolinearitas baik pada level indikator maupun konstruk, yang ditandai dengan nilai Variance Inflation Factor (VIF) yang seluruhnya berada di bawah batas kritis. Hal ini menjamin bahwa estimasi parameter yang dihasilkan adalah stabil dan dapat diinterpretasikan dengan confidence. Kedua, ketiga hipotesis yang diusulkan dalam penelitian ini didukung secara empiris dan signifikan pada tingkat kepercayaan 99%, yang mengonfirmasi bahwa semua hubungan kausal yang diajukan dalam kerangka teoretis memiliki dasar statistik yang kuat.

Lebih lanjut, temuan ini mengungkap peran krusial dari konstruk AK sebagai mediasi parsial dalam hubungan antara IKP dan KPP. Hal ini dibuktikan melalui masih signifikannya pengaruh langsung IKP terhadap KPP, meskipun besarnya lebih kecil jika dibandingkan dengan pengaruh tidak lintas yang melalui AK. Secara keseluruhan, model yang diusulkan menunjukkan kekuatan prediktif yang sangat kuat, khususnya untuk konstruk KPP yang mampu dijelaskan oleh variabel prediktornya sebesar 74.2% (R² = 0.742). Nilai R² yang substantif ini menunjukkan bahwa model ini tidak hanya signifikan secara statistik tetapi juga memiliki relevansi praktis yang tinggi dalam menjelaskan variasi yang terjadi pada konstruk endogen.

Evaluasi Kebaikan dan Kecocokan Model

Selain mengevaluasi parameter model, penelitian ini juga menguji kekuatan prediksi model dan kesesuaiannya secara keseluruhan (model fit). Hasil evaluasi tersebut disajikan pada Tabel 13 dan 14.

 Table 13 LV Predictions

 Q²predict
 RMSE
 MAE

 AK
 0.400
 0.804
 0.655

 KPP
 0.439
 0.784
 0.670

Table 14 Model Fit

	Saturated model	Estimated model
SRMR	0.148	0.148
d_ULS	1.455	1.455
d_G	1.261	1.261
Chi-square	513.506	513.506
NFI	0.541	0.541

Nilai predictive relevance (Q^2) untuk kedua konstruk endogen menunjukkan nilai yang positif dan substantial $(Q^2 > 0.35)$. Nilai Q^2 untuk konstruk AK adalah 0.400 dan untuk KPP adalah 0.439. Hal ini memberikan bukti kuat bahwa model yang diusulkan memiliki kapabilitas prediktif yang relevan dan kekuatan prediksi yang baik terhadap data yang diamati.

Di sisi lain, evaluasi goodness-of-fit (GoF) model menunjukkan hasil yang beragam. Nilai Standardized Root Mean Square Residual (SRMR) adalah 0.148. Nilai ini melebihi ambang batas rekomendasi yang ketat (< 0.08 atau < 0.10), namun masih berada dalam batas yang dapat diterima (< 0.15 atau < 0.20) untuk model-model yang kompleks dalam penelitian sosial, sehingga dapat dikategorikan sebagai marginal fit. Tingginya nilai Chi-Square = 513.506 merupakan hal yang lazim terjadi pada sampel dengan ukuran menengah hingga besar dan model dengan banyak indikator. Secara keseluruhan, mengingat kekuatan prediktif model (Q²) yang sangat baik dan signifikansi semua hubungan hipotesis, model ini dianggap memiliki kecocokan yang memadai untuk menjelaskan hubungan antar variabel dalam penelitian ini.

Hasil analisis data pada penelitian ini memberikan dukungan empiris yang kuat bagi seluruh hipotesis yang diajukan. Temuan ini tidak hanya mengonfirmasi hubungan yang diusulkan dalam model teoretis tetapi juga memberikan wawasan mendalam mengenai mekanisme yang menghubungkan Konstruk IKP, AK, dan KPP. Pertama, hubungan antara IKP dan AK (H1) terbukti signifikan dan positif ($\beta=0.635,\ p<0.01$). Hal ini menunjukkan bahwa peningkatan pada tingkat IKP secara langsung berkontribusi terhadap peningkatan yang signifikan dalam AK. Kedua, hubungan antara AK dan KPP (H2) juga menunjukkan pengaruh yang positif dan sangat signifikan ($\beta=0.615,\ p<0.01$). Ini mengindikasikan bahwa AK merupakan prediktor yang kuat bagi terbentuknya KPP.

Temuan yang paling menarik dalam penelitian ini adalah terkonfirmasinya peran mediasi parsial yang dimainkan oleh AK dalam hubungan antara IKP dan KPP. Pengaruh tidak langsung IKP melalui AK terhadap KPP adalah signifikan dan kuat. Sementara itu, pengaruh langsung IKP terhadap KPP (H3: $\beta=0.274,\ p<0.01)$ tetap signifikan, meskipun besarnya lebih kecil. Pola ini mengungkap bahwa meskipun IKP memiliki pengaruh langsung terhadap KPP, sebagian besar pengaruhnya justru ditransmisikan melalui peningkatan AK. Dengan kata lain, AK bukan hanya sekadar variabel perantara, melainkan sebuah mekanisme kognitif kunci yang menjelaskan mengapa dan bagaimana IKP dapat ultimately meningkatkan KPP. Temuan ini memberikan kontribusi teoretis yang penting dengan memetakan jalur kompetensi pelaut yang menghubungkan adaptasi kurikulum dengan hasil kinerja pendidikan penerbangan.

Kekuatan model ini semakin ditekankan oleh nilai koefisien determinasi (R²) yang tinggi untuk konstruk KPP, yaitu sebesar 0.742. Ini berarti model yang diusulkan mampu menjelaskan 74.2% varians dari KPP, sebuah kekuatan prediktif yang termasuk kategori substantial dalam penelitian ilmu sosial. Selain itu, nilai predictive relevance (Q²) yang positif dan substantial untuk semua konstruk endogen membuktikan bahwa model ini memiliki kemampuan prediksi yang relevan terhadap data yang diamati.

Meskipun hasil penelitian ini kuat, beberapa keterbatasan perlu diakui. Pertama, nilai SRMR yang diperoleh (0.148) menunjukkan bahwa model memiliki kecocokan yang marginal, yang mengindikasikan mungkin masih ada variabel lain yang belum dimasukkan ke dalam model yang dapat menjelaskan hubungan tersebut. Berdasarkan keterbatasan ini, penelitian di masa datang disarankan untuk, Menambahkan variabel anteceden atau konsekuensi lain untuk meningkatkan kekuatan penjelas model dan nilai goodness-of-fit, Melakukan replikasi penelitian dengan cakupan sampel yang lebih luas dan beragam untuk meningkatkan generalisasi temuan, Mengadopsi desain longitudinal untuk menelusuri hubungan kausal antar variabel dengan lebih robust.

KESIMPULAN

Berdasarkan seluruh hasil analisis dan pembahasan, penelitian ini menyimpulkan bahwa integrasi kompetensi pelaut (IKP) secara langsung dan signifikan memperkuat adaptasi kurikulum (AK), menunjukkan bahwa kompetensi dari bidang kepelautan memberikan dasar krusial bagi penyesuaian kurikulum pendidikan penerbangan yang lebih relevan dan aplikatif. AK terbukti menjadi mekanisme kunci yang secara langsung dan signifikan meningkatkan kinerja pendidikan penerbangan (KPP), menegaskan bahwa kurikulum yang dinamis dan mengadopsi elemen lintas disiplin merupakan faktor utama peningkatan kualitas pendidikan. Selain itu, AK berperan sebagai mediasi parsial yang efektif, sehingga pengaruh IKP terhadap KPP menjadi optimal ketika diimplementasikan melalui penyesuaian

kurikulum yang terstruktur. Model yang diusulkan memiliki kekuatan prediktif tinggi dengan nilai R² KPP sebesar 0.742, yang berarti 74,2% variasi KPP dapat dijelaskan oleh kombinasi IKP dan AK, sehingga model ini andal untuk menjelaskan fenomena yang diteliti. Secara praktis, penelitian ini menekankan pentingnya pendekatan interdisipliner dalam pendidikan vokasi, mendorong lembaga pendidikan penerbangan untuk secara sistematis mengintegrasikan kompetensi maritim—seperti disiplin keselamatan, manajemen logistik, dan prosedur operasional standar—ke dalam kurikulum, sekaligus menyesuaikan dan merancang ulang kurikulum agar kompetensi lintas bidang dapat diserap dan diaplikasikan secara efektif oleh peserta didik, sehingga kualitas lulusan meningkat, kesiapan kerja optimal, dan standar industri terpenuhi.

REFERENSI

- Astina, M. A. (2024). Merajut Kompetensi Dari Dunia Pendidikan Hingga Sertifikasi. Deepublish.
- Debarger, A. H., Penuel, W. R., Moorthy, S., Beauvineau, Y., Kennedy, C. A., & Boscardin, C. K. (2017). Investigating Purposeful Science Curriculum Adaptation as a Strategy to Improve Teaching and Learning. *Science Education*, 101(1), 66–98. https://doi.org/10.1002/sce.21249
- Flin, R., O'Connor, P., & Crichton, M. (2013). Safety at the sharp end: A guide to non-technical skills. In *Safety at the Sharp End: A Guide to Non-Technical Skills*.
- Irwin, A., Taylor, S., Laugerud, E., & Roberts, D. (2016). Investigating Non-Technical Skills in Scottish and English Aircraft Maintenance Teams Using a Mixed Methodology of Interviews and a Questionnaire. *International Journal of Aviation Psychology*, 26(3–4), 105–119. https://doi.org/10.1080/10508414.2017.1319734
- Lee, S.-H., Amos, B. A., Gragoudas, S., Lee, Y., Shogren, K. A., Theoharis, R., & Wehmeyer, M. L. (2006). Curriculum augmentation and adaptation strategies to promote access to the general curriculum for students with intellectual and developmental disabilities. *Education and Training in Developmental Disabilities*, 41(3), 199–212.
- Mueller, R. O., & Hancock, G. R. (2015). Factor Analysis and Latent Structure Analysis: Confirmatory Factor Analysis. In *International Encyclopedia of the Social & Behavioral Sciences: Second Edition* (hal. 686–690). https://doi.org/10.1016/B978-0-08-097086-8.25009-5
- Nguyen, T. D., Shih, M.-H., Srivastava, D., Tirthapura, S., & Xu, B. (2019). Stratified random sampling from streaming and stored data. *Advances in Database Technology EDBT*, 2019-March, 25–36. https://doi.org/10.5441/002/edbt.2019.04
- Phanphichit, T., & Bartusevičienė, I. (2024). Perspectives of stakeholders on onboard training: A thematic analysis of qualitative interviews. *Journal of International Maritime Safety Environmental Affairs and Shipping*,

- 8(4). https://doi.org/10.1080/25725084.2024.2408698
- Rahayu, S. T. (2023). Pendidikan Maritim: Kunci Pengembangan SDM Unggul di Era Industri 4.0-Jejak Pustaka. Jejak Pustaka.
- Rivera, V. F., Thomas, R., & Albelo, J. D. (2024). Advance Qualification Program Integration in Aviation Higher Education. *Collegiate Aviation Review*, 42(2), 194–198.
- Sedláčková, A. N., Kazda, A., & Novák, A. (2022). Implementation of Knowledge Alliance in Air Transport into Educational System of Slovak Republic. *Transportation Research Procedia*, 59, 260–270. https://doi.org/10.1016/j.trpro.2021.11.118
- Sudadio, M. P. (2024). Manajemen Desain Mutu Terpadu Jasa Pendidikan: Upaya Sentral dan Strategis dalam Penyelenggaraan Pendidikan Bermutu. Jakad Media Publishing.
- Widiarto, H. (2020). Pengaruh kompetensi terhadap efektivitas kinerja dosen di Sekolah Tinggi Penerbangan Indonesia. *Langit Biru: Jurnal Ilmiah Aviasi*, 13(01), 181–192.
- Wooldredge, J. (2021). Path Analysis. In *The Encyclopedia of Research Methods in Criminology and Criminal Justice: Volume II: Parts 5-8* (hal. 515–522). https://doi.org/10.1002/9781119111931.ch105